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Stable Solutions of the Close-Coupled Equations for 

Ro-Vibrationally Inelastic Collisions* 

In the quantum-mechanical study of inelastic collisions between atoms and 
diatomic molecules, one must solve a set of coupled second-order ordinary 
differential equations, commonly called the close-coupled (CC) equations [I]. 
In matrix notation these are: 

[ 
& 1 + k2 - V(R)] u(R) = 0 (1) 

where V(R) is the Hermitian matrix of the coupling potential plus the centrifugal 
varrier and k2 is the diagonal wavevector matrix. Gordon [2-4] has developed a 
widely used program for the efficient numerical solution of these equations. Some 
recent work [5, 61 has suggested that this program may be poorly suited for the 
determination of vibrationally inelastic cross sections at low collision energies 
whenever the suare magnitude of the relevant S-matrix elements drops below 
~1 . lO-6. Typically, nonvanishing fluctuations in the S-matrix appear as one 
increases the number of channels or, alternatively, as one decreases the input 
tolerance parameters. For example, extensive calculations on the He-H, system [6] 
indicate that S-matrix elements of square magnitude 1 . lo-’ can be determined 
only to within +20 “/, and those of square magnitude 21 . lo-* can become 
lost in computational “noise.” This problem occurs only when closed channels 
are included [6]. As we will discuss in this note, these difficulties do not arise 
from an inherent instability in either the algorithm [2] or program [3], and can 
be easily eliminated. 

The Gordon algorithm is based on propagating the solutions to the CC equa- 
tions outward through a series of intervals. For the He-H, system [6] -200 inter- 
vals are required for the accurate determination of ro-vibrationally inelastic cross 
sections of ~10~~ AZ. Since, for coupled equations, the error is roughly propor- 
tional to the cube of the step size [3], doubling the number of intervals theoretically 
results in an order of magnitude increase in accuracy. Within each interval the 
solutions, u(R), are subjected to a unitary transformation which is chosen to 
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diagonalize the sum of the wavevector and potential matrices at the midpoint 
of the interval, R, . Expanding the potential matrix V(R) in a power series about 
R,, , one can write the transformed CC equations as 

[ xl+f-G(R-RR,)++(R)=O dR2 

where f is the (diagonal) transform of k2 - V(R,) and G is the transform of the 
first derivative of V(R). By neglecting the off-diagonal elements of G as well as 
higher derivatives of V(R), these equations can be uncoupled and the solutions 
expressed in terms of Airy functions. For the nth channel one has 

u,(R) = A.Ai[a,,(R -t fin)1 + BJ%[~,(R + ,%)I (3) 

where LX~ = (Gnn)li3 and fin = -(fJGnn + R,). The coefficients A,, and B, are 
determined by solution-matching at the boundary of the previous interval. 

The first-order corrections to the uncoupling approximation are related to 
integrals involving the various uncoupled solutions [2]. Since general analytic 
expressions for these integrals do not exist, the program performs an “average 01” 
calculation replacing the true solutions by 

u, N E,(R) = &Ai[ol(R + /3,J] + B,Bi[E(R + Pn)] (4) 

where n represents an average value for all channels and the new expansion 
coefficients are determined by matching C,(R) to u,(R) at the right-hand endpoint 
of the interval. The maximum values of A, and B,, are also used to set thresholds 
for the neglect of small correction terms to the uncoupled solutions. 

in regions where the potential is slowly varying, the Airy functions for vibra- 
tionally closed channels exhibit extreme exponential behavior, creating the 
possibility of instabilities due to numerical overflow and underflow. As discussed 
by Gordon [3], these can easily be avoided in the propagation of the uncoupled 
solutions v,(R). However, problems do arise in the evaluation of the first-order 
corrections, where, for the closed channel components, the A, and B, expansion 
coefficients can become enormously large. This is a direct consequence of replacing 
the correct 01, for each channel by an averaged value. As a result, the numerical 
thresholds mentioned above become too high, leading to an artificial neglect of 
important correction terms arising from the off-diagonal elements of the G-matrix 
[Eq. (2)]. Since the largest of the correction terms is used to determine the size 
of the next interval, the program is induced into taking steps which are too large, 
thereby losing the desired accuracy in the solutions and, ultimately, in the s-matrix. 
The use of double-precision arithmetic is hardly effective in controlling this 
problem. 
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The way out of this dilemma is to use simpler, constant-potential [3] solutions 
to evaluate the perturbation integrals whenever the maximum Airy function 
argument exceeds a critical value, while retaining the correct linear slope (Airy 
function) zeroth-order solutions. This procedure is already incorporated in the 
Gordon program [4, statement 81, subroutine STEP]; however, branching occurs 
for an argument of 22, which is too high to avoid the difficulties discussed in the 
preceding paragraph. We have found it necessary to use a value of 7.5; so statement 
81 of STEP should be changed to read: 

IF (TEST.GT.7.5) GO TO 20. The accuracy of the computed first-order 
corrections can be further insured by setting the tolerance parameter TOLL0 
considerably smaller than the main tolerance parameter TOLHI [4]. These changes 
result in only a small increase (510 %) in the total number of integration steps 
and, consequently, the computation time, yet lead to stability in the calculation 
of ro-vibrationally inelastic S-matrix elements of square magnitude lo-lo or less. 
The modified program has been carefully tested [7] for accuracy against a totally 
different scattering program based on the devogelaere algorithm [l]. 
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